A quotient stack related to the Weyl algebra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quotient Stack Related to the Weyl Algebra

Let A denote the ring of differential operators on the affine line with its two usual generators t and d dt given degrees +1 and −1 respectively. Let X be the stack having coarse moduli space the affine line Spec k[z] and isotropy groups Z/2 at each integer point. Then the category of graded A-modules is equivalent to the category of quasicoherent sheaves on X .

متن کامل

Order Sorted Quotient Algebra

Let R be a non empty poset. One can verify that there exists an order sorted set of R which is binary relation yielding. Let R be a non empty poset, let A, B be many sorted sets indexed by the carrier of R, and let I1 be a many sorted relation between A and B. We say that I1 is os-compatible if and only if the condition (Def. 1) is satisfied. (Def. 1) Let s1, s2 be elements of the carrier of R....

متن کامل

Structure of a Hecke Algebra Quotient

Let W be a Coxeter group with Coxeter graph Γ. Let H be theassociated Hecke algebra. We define a certain ideal I in H and study thequotient algebra H̄ = H/I. We show that when Γ is one of the infinite seriesof graphs of type E, the quotient is semi-simple. We examine the cell structuresof these algebras and construct their irreducible representations. We discussthe case where...

متن کامل

18.703 Modern Algebra, Quotient Groups

Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ : G −→ G', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G. Somewhat surprisingly this trivially necessary condition is also in fact sufficient. The idea is as follows. Given G and H there is an obvious map of sets, where H is the inverse image of a point. We just put X...

متن کامل

Polynomial Extensions of the Weyl C*-Algebra

We introduce higher order (polynomial) extensions of the unique (up to isomorphisms) non trivial central extension of the Heisenberg algebra. Using the boson representation of the latter, we construct the corresponding polynomial analogue of the Weyl C*-algebra and use this result to deduce the explicit form of the composition law of the associated generalization of the 1-dimensional Heisenberg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2011

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.08.014